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Abstract— A modified version of Sugeno-Yasukawa (SY)
modelling algorithm is presented. We have employed a new
method for parameter identification phase based on genetic
algorithms (GA). Moreover, we have modified the modelling
sequence by applying parameter identification on intermediate
models. Models created with this method had lower mean
square errors (MSE) compared to original algorithm. A case
study on breast cancer survival prediction is also presented
that demonstrates a thorough comparison of the new modelling
algorithm with several other methods such as SVM, C5 decision
tree, ANFIS and the original SY method. The modified SY
method had the highest average of accuracies among all models.
Moreover, it had significantly higher accuracy compared to
the original SY method and ANFIS. 10-fold cross validation
approach was employed for all evaluations.

I. INTRODUCTION

Fuzzy logic was introduced by Zadeh in 1965 as a way
of expressing uncertainty [1]. Later in 1976, Mamdani and
Assilian [2], [3] presented a fuzzy logic controller based
on Zadeh’s calculus [4]. In this study, control rules that
were stated by an expert human operator were converted
into an automatic controller. The controlling rules employed
in the system were called Mamdani fuzzy model in future
studies. Takagi and Sugeno introduced a fuzzy model in
1985 (TS fuzzy model)[5]. Both TS and Mamdani fuzzy
models are described by fuzzy IF-THEN rules. However,
unlike Mamdani fuzzy model, where both antecedents and
consequences are fuzzy propositions, in TS fuzzy model only
the antecedents are fuzzy propositions and the consequences
are linear functions. In [6], [7], [8] the literature it has
shown that Mamdani and TS fuzzy models are both universal
approximators.

Most of these early studies were focused on defining
fuzzy models, however, they did not introduce a process to
identify fuzzy models automatically and the identification
process was manual. For complex systems manual fuzzy
model identification is not possible. Therefore, in later stud-
ies automatic model identification was considered [7], [9],
[10], [11], [12]. One of these early studies was Sugeno-
Yasukawa fuzzy modelling algorithm that was a clustering
based method to identify Mamdani fuzzy model [12].

In this study, Sugeno-Yasukawa modelling is described
in Section II. Then, AH fuzzy modelling (the modified
modelling algorithm is refereed to as AH fuzzy modelling
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algorithm in the text) algorithm and the evolutionary param-
eter identification algorithm is presented in Section III. In the
experimental result section, the AH algorithm is employed
for modelling of a non-linear system in subsection IV-A and
then in a case study for breast cancer survival prediction.
The purpose of this case study was to classify patients into
two groups of surviving patients and non-surviving patients.
The survival threshold was considered 5 years similar to
other studies on breast cancer survival prediction [13], [14],
[15]. The original SY fuzzy modelling algorithm along with
common machine learning techniques such as SVM [16],
C5 decision tree [17] and ANFIS [11] were employed in
this case study as a benchmark for AH algorithm. Predictive
classification accuracy (accuracy and predictive classification
accuracy are referring to the same measure in this text) was
employed for comparing the performance of the classifiers.

II. SUGENO YASUKAWA MODELLING

In their study, Sugeno and Yasukawa [12] defined two high
level steps: structure identification and parameter identifica-
tion. Two types of structure identification was described as
type I that is dealing with finding input variables and type II
that is dealing with finding input-output relations. After the
structure of a model is identified, parameter identification,
that can be interpreted as fine tuning of the model parameters,
takes place. For Mamdani fuzzy model, model parameters are
fuzzy membership functions and parameter identification is
optimizing the initially defined membership functions.

A. Fuzzy Model

The Mamdani fuzzy model used in SY modelling is
developed for a multi−input and single−output system [12]:

Ri : if x1 is A
i
1 and x2 is A

i
2 ...and xn is A

i
n then y is B

i,
(1)

where Ri is the ith rule (1 ≤ i ≤ m), xj (1 ≤ j ≤ n) are
input variables, y is the output, and Ai

j and Bi are fuzzy
variables.

B. Structure Identification

As mentioned structure identification were divided into
two types. Firstly structure identification type II will be
discussed. In order to find input-output relations, number
of rules and partitioning of input space are the two main
phases. An incremental algorithm based on fuzzy c-means
(FCM) clustering [18] is applied on output values to identify
the optimal number of rules. In this algorithm, number of
output clusters created based on FCM increases from two to
more until SC criterion (see Equation 2) reaches its minimum
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value.

SCm =
N∑

i=1

nc∑
j=1

um
ij

(
‖xi − vj‖2 − ‖vj − x‖2

)
, (2)

where,
N : number of data to be clustered;
nc: number of clusters (nc ≥ 2);
xi: i’th data;
vj : center of j’th cluster;
x: average of data x1, x2, ..., xn;
‖‖: norm;
uij : grade of i’th data belonging to j’th cluster;
m: adjustable weight (usually between 1.5 and 3)

Afterwards, process of selecting effective inputs takes
place. Firstly, the training data is divided into two groups,
A and B. Then, by using these two groups of the training
data, two intermediate fuzzy models are created for each of
the input variables that have one input and one output (For
example, if there are five input parameters in the training
data, 5 pairs of intermediate models will be created). The
best input is chosen based on the RC values of these models
(see Equation 3). Smaller RC values implies that the input(s)
has higher effect on the output. As the next stage, new pairs
of intimidate models with two inputs are created. The first
input of the later intermediate models is the same as the
best intermediate model from the first stage. This process
continues until all RC values of stage n are more than stage
n best RC or all inputs are used. Meanwhile, if in stage
n, RC value of the pair of intermediate model is less than
the global minimum RC value, the n’th input variable is
considered ineffective. The reason is to avoid creating too
many intermediate models.

RC =

[
kA∑
i=1

(yA
i − yAB

i )2

kA
+

kB∑
i=1

(yB
i − yBA

i )2

kB

]
, (3)

where,
kA and kB : the number of data of the groups A and B;
yA and yB : the output data of the groups A and B;
yAB : the output data of intermediate model identified for
group A for input data of group B;
yBA: the output data of intermediate model identified for
group B for input data of group A;

The membership values calculated by FCM algorithm [18]
is employed to create trapezoid type membership function for
inputs and outputs by employing a trapezoidal approximation
algorithm (Studies presented in [12], [19], [20] are examples
of trapezoidal approximation algorithms). By the end of this
stage a Mamdani fuzzy rule base presented in 1 is created.

C. Parameter Identification
The Mamdani model that is created by the structure

identification process, can be further optimized. In this study
trapezoidal shaped fuzzy membership functions (tmf) are
used to represent fuzzy variables:

A : {p1, p2, p3, p4}, (4)

where A is a fuzzy variable and {p1, p2, p3, p4} are
trapezoidal membership function parameters.

Parameter identification is responsible for this process.
Sugeno and Yasukawa demonstrated a parameter identifica-
tion algorithm in their study [12] that is as follows:

1) Set the value f of adjustment.
2) Assume that the kth parameter of the jth fuzzy set is

pk
j .

3) Calculate pk
j + f and pk

j − f . If k = 2, 3, 4 and pk
j − f

is less than pk−1
j , then p̂k

j = pk−1
j ; else p̂k

j = pk
j − f .

Also if k = 1, 2, 3 and pk
j + f is bigger than pk+1

j ,
then ˆ̂pk

j = pk+1
j ; else ˆ̂pk

j = pk
j + f .

4) Choose the parameter which shows the best perfor-
mance among {p̂k

j ,pk
j , ˆ̂pk

j } and replace pk
j with it.

5) Go to step 2 while unadjusted parameters exist.
6) Repeat step 2 until we are satisfied with the result.
The value of f was set into 5% of the width of universe

of discourse and steps 1 to 6 were ran six times.

III. AH FUZZY MODELLING

The high level flowchart of SY modelling algorithm and
the its modified version AH modelling algorithm are pre-
sented in Figures 1 and 2. We have employed a GA parameter
identification instead of the original sequential algorithm
employed by Sugeno and Yasukawa. Furthermore, in AH, the
parameter identification process is applied for intermediate
fuzzy models as well as the final fuzzy model.

The introduced parameter identification algorithm in [12]
is a sequential algorithm. Therefore, it is possible to calculate
MSE values for one of the readjusted membership parameters
at a time. On the other hand, in this algorithm there are 2
new values for each of the trapezoidal membership function
parameters. As a result, the search space for tuning the fuzzy
model is very restricted and there is no possibility of parallel
change of parameters for tuning. This problem increases the
chance of choosing a local minimum instead of the global
minimum. By employing GA for parameter identification,
parallel readjustment of membership functions becomes pos-
sible. On the other hand, for each of the membership function
parameters, more values will be tested for fine tuning.

Our earlier study showed that by applying parameter
identification for intermediate fuzzy models, the RC values
decreases [21]. This decrease in RC values implies that the
intermediate models have a lower error rate. As a result
of having more accurate intermediate fuzzy models, the
process of selecting effective input parameters (structure
identification type I or feature selection) is more reliable. In
this study by facilitating a way of using GA for parameter
identification of intermediate models we have achieved lower
RC values compared to both studies [21] and [12] for the
non-linear system presented in Equation 8.

A. Evolutionary Parameter Identification

Evolutionary algorithms have been employed for different
stages of fuzzy modelling (GA based parameter identification
and evolutionary parameter identification are referring to the
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Fig. 1. Algorithm flowchart for SY modelling

same algorithm). Cordon and his colleagues in [22] present
two general categories of employing genetic algorithms in
fuzzy modelling: genetic tuning processes and learning with
genetic algorithms. In this study genetic algorithm is em-
ployed in the first category and more specifically for tuning
of membership functions of the fuzzy model (parameter
identification). Aim of a genetic tuning process is to adopt
an existing fuzzy model to create a fuzzy model with a better
performance.

In [22] definition of chromosome Cj was presented for a
rule base with triangular shaped membership function. We
have presented a similar definition for a Mamdani rule base
with trapezoidal membership functions. First, we need to
define the partial chromosome Cji, i = 1, ...,m, as follows:

Cji =
(
p1

i1, p
2
i1, p

3
i1, p

4
i1, ..., p

1
in, p

2
in, p

3
in, p

4
in, p

1
i , p

2
i , p

3
i , p

4
i

)
,

(5)

where,
(p1

ik, p
2
ik, p

3
ik, p

4
ik): are the four parameters of the k’th input

fuzzy set in the i’th rule antecedent;
(p1

i , p
2
i , p

3
i , p

4
i ): are parameters of the output fuzzy set in

the i’th rule consequent;
j: index of the chromosome in the whole population;
i: index of the rule in the fuzzy rule base (1 ≤ i ≤ m);

m: number of rules;
n: number of inputs.

Therefore, the j’th chromosome Cj definition is concate-
nation of rule chromosomes Cij :

Cj = Cj1 Cj2 ... Cjm (6)

The first chromosome that is created based on the fuzzy
model is referred to as the initial chromosome. Given that
size of the chromosomes affects the search space, in our
simulations the population of the chromosomes is set based
on the length of the initial chromosome:

L = Ratio× ||Cj ||, (7)

where,
L: Initial chromosomes population,
Ratio: a value that defines what percentage of the
chromosome length is the initial population
(0 < Ratio ≤ 1),
||Cj ||: length of a chromosome.

For example for a Mamdani rule base with 3 rules that
each rule has two inputs, the size of a chromosome equals
36 (3 rules × (2 inputs × 4 trapezoidal membership function
parameters (tmf params) + 1 output * 4 tmf params) = 36).
If the Ratio equals 50% (0.50), therefore the size of the
initial population equals 18 chromosomes (from Equation
7, 36 multiplied by 0.50 equals 18). Note that the initial
population is created based on the initial chromosome (see
Equation 6) that was created from the fuzzy model (similar
to GA tuning process in [22], [23]).

IV. EXPERIMENTAL RESULTS

In this section we present the modified algorithm results
for a non-linear system firstly. Then a case study on employ-
ing the modified algorithm (AH 1) along with other machine
learning algorithms for breast cancer survival prediction
is presented. In both simulations for the nonlinear system
and the case study for breast cancer survival predication,
Ratio’s value was 60%. The MSE function was employed
as the GA’s fitness function, number of iterations was set
to 40 iteration. For other GA parameters such as mutation,
crossover functions, etc. the default values of the MATLAB
GA toolbox version 2.3 were used.

A. Non-Linear System

In [12] a sample non-linear system was presented (see
Equation 8). We have used the evolutionary parameter iden-
tification for this system and the results are compared (see
Figure IV-A). The best MSE achieved Sugeno and Yasukawa
study was 0.01 which is presented by dotted line in Figure
IV-A. Results show that the MSE values of all 10 runs of 10-
fold cross-validation are lower than the best SY MSE value
that is a significant improvement.

y = (1 + x−2
1 + x−1.5

2 )2, 1 ≤ x1, x2 ≤ 5. (8)

1AH stands for Amir Hadad’s modelling algorithm and SY stands for
Sugeno-Yasukawa’s modelling algorithm
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Fig. 2. Algorithm flowchart for AH modelling

TABLE I
COMPARISON OF MINIMUM RC VALUES FOR INTERMEDIATE MODELS

One input Two inputs
AH 0.1450 0.0680
Case (I) 0.6300 0.4240
Case (II) 0.4705 0.2905

The minimum RC values of the intermediate models
created by AH method in this experiment is compared to two
other cases in Table I. In case (I) no parameter identification
was applied for intermediate models and in case (II) SY
parameter identification is applied.

B. A Case Study: Breast Cancer Survival Prediction

The purpose of this case study was to investigate the
applicability of the improved SY method for a real world
problem. The problem investigated was survival prediction
for breast cancer patients. Moreover, a group of different
machine learning techniques were employed as a benchmark
for the AH modeler (modified SY modeler) results.
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Fig. 3. Comparison of AH and SY performance for a sample nonlinear
system (see Equation 8)

A classification problem was defined on the Australian
National Territory and surrounding regions Breast Cancer
Treatment Dataset (ABCTD) (1997-2009). There were 12
prognosis factors for 814 patients in the dataset. Additionally,
for each patient, the number of survival days was recorded in
the dataset. In the classification problem, a five year survival
threshold were used. The aim was to predict surviving and
non-surviving patients. The five year threshold used for
patients’ survival in the first classification problem, is the
same as studies parented in [13], [14], [15].

1) The ACT and surrounding regions Breast Cancer Treat-
ment Dataset: ABCTD dataset consists of prognosis records
of 814 patients. The eligibility criteria for entry into the
registry was primarily found on early breast cancer stage,
although it included patients with single primary and multiple
primary tumours. It has been collected over twelve years of
follow-up from 1997 to 2009 as a part of the Breast Cancer
Treatment Project2 [24]. The breast Cancer Treatment Project
was started in May 1997. As a result, an ongoing community
based audit of breast cancer treatment was developed. The
clinical indicators used in this audit were agreed by the ACT
and SE NSW Breast Cancer Treatment Group. The aim of
this project is to collect and examine data on treatment and
outcomes for women with breast cancer. There are over 80
prognosis factors in the dataset as well as invaluable survival
information. For this case study, based on the experience of
breast cancer expertise a subset of thirteen prognosis factors
were selected for survival perdition purpose (Table II).

Unlike SEER [25] that has unifocal tumour size infor-
mation (only the largest tumour size is provided), ABCTD
provides data about whether the patient has multiple tumours
or a single tumour (this factor is referred to as multi single
prognosis factor in the text).

2) Experiment Design: C5 decision tree [17], SVM with
RBF kernel [16], ANFIS [11], SY and AH were employed
to classify patients. In the classification problem, 10-fold
cross validation of the ABCTD dataset was performed for
training and testing of the classifiers. Predictive classification
accuracy [26], [27] was measured for all classifiers (see

2http://health.act.gov.au/c/healtha=da&did=10048779&pid=1060038141



TABLE II
PATIENTS’ PROGNOSIS FACTORS IN CANBERRA BREAST CANCER

DATASET(1997-2007)

No Prognosis Factor Description
1 Age Age of the patient
2 Nodes removed Number of Lymphatic nodes removed

from the patients breasts
3 Nodes involved Number of cancerous lymphatic nodes
4 Progression Status Progression Status
5 Multi single Whether the patient has got multiple

or single tumours
6 Histology Histology of the patient
7 LargTum Size of the largest patient’s tumour
8 Nodes Wether lymphatic nodes are cancerous

or not
9 LVI Lymphovascular Invasion
10 Grade Tumour grade (TNM staging)
11 ER Receptor status: oestrogen
12 PR Receptor status: progesterone

Survival Which survival group patient belongs to:
Less than 5 years or more than 5 years

TABLE III
CLASSIFICATION CONFUSION MATRIX (REDRAWN FROM [27])

Predicted Class
True Class −ve +ve
−ve Tn Fp Cn
+ve Fn Tp Cp

Rn Rp N

Equation 9). Furthermore, the pairwise student t-test was
employed to investigate whether the AH algorithm had
improved the accuracy for the ABCTD survival prediction
significantly.

Two types of errors can be defined for binary classification
problems: type I error is false positives (Fp) and type II
error is false negatives (Fn). False positives occur when
a record that is actually negative is classified as positive
and false negatives occur when a record is acutely positive
and is classified as negative. True positives (Tp) and true
negatives (Tn) is when the records are classified correctly
as either positive or negative. Cn and Cp are total number
true negatives and positive records, and Rn and Rp are
predicted positive and negative records (see Table III). As
mentioned before, for measuring the performance of different
classifiers, predictive accuracy was calculated. It is a measure
that takes into consideration all correctly detected cases and
also all cases that were classified correctly as not belonging
to the class (Tp and Tn respectively). It is a very common
performance measure and most of the recent studies used it
for analysis of classifiers performance [28], [29], [15].

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
=

Tp + Tn

Cp + Cn
, (9)

3) Case study results: LIBSVM toolbox [30] was used
to train both a C5 decision tree (modified version of C4.5
[17], [31]) and an RBF Kernel SVM classifier. For the C5

TABLE IV
ACCURACY VALUES FOR 5 YEARS SURVIVAL IN ABCTD

Method Average of Variance of Highest Lowest
Accuracies % Accuracies % Accuracy % Accuracy %

ANFIS 60.20 3.45 66.67 48.72
C5 61.86 1.26 64.81 60.13
SVM 63.27 1.45 66.08 60.90
SY 53.75 4.00 56.15 46.15
AH 63.57 2.30 69.62 59.49

TABLE V
PAIRWISE STUDENT T-TEST RESULTS

Method p-value
AH vs SY 0.00028
AH vs ANFIS 0.03387
AH vs SVM 0.40236
AH vs C5 0.08743

decision three, the training was performed with different
parameter settings. For each of the training runs, confidence
parameter were changed from 0.1 to 0.5 with step size of
0.1 and the best confidence value was selected. This process
was performed ten times for each fold. Therefore, there
was 50 (5 different confidence value * 10 times) runs of
training for each fold and 500 runs for all ten folds. Grid
search for C and γ parameters was performed to create the
most optimized SVM classifier (C ∈ [1,10] with steps of
size 1.0 and γ ∈ [-5,5] with steps of size 1.0). ANFIS
and SY classifiers were the fuzzy based methods used to
create classifiers for the binary classification problem. For
ANFIS the default parameter values in MATLAB ANFIS
modeler [32] were used. The f value for SY algorithm
was 5% of universe of discourse and SC criterion was
employed to measure the optimal number of clusters. The
values of predictive accuracy for all classifiers are presented
in Table IV. AH method had the highest accuracy compared
to all methods (63.57%). The student pairwise t-test were
employed for AH algorithm and all other algorithm (see
Table V). Results shows that AH algorithm accuracy is
significantly higher than SY and ANFIS algorithms. But
AH algorithm has not achieved a significant improvement
compared to SVM and C5 algorithms. By comparing the
variance values in Table IV, AH average of accuracies shows
a higher reliability compared to ANFIS and SY algorithms
average of accuracies. The most reliable accuracies’ average
belongs to C5 and the SVM is the second most reliable. In
10 runs, AH highest accuracy is the highest accuracy among
all classifiers in this table (69.62%).

V. CONCLUSION

A modified version of SY modeler with an evolutionary
parameter identification algorithm was presented. Two ex-
periments were performed: a non-linear system modelling
and breast cancer survival prediction. In both experiment, we
demonstrated that by employing the evolutionary algorithm



instead of the original parameter identification presented by
Sugeno and Yasukawa, the tuned fuzzy model was per-
forming significantly better compared to SY fuzzy model.
The final fuzzy model created by AH algorithm in the case
study had the highest accuracy value. Although the accuracy
was not significantly higher than SVM and C5 accuracy
values, we need to consider that the created classifier based
on Mamdani fuzzy model has the advantage of linguistic
interpretability [33], [23].

Additionally, we modified SY modelling process, by ap-
plying the GA based parameter identification for intermediate
fuzzy models in the modelling process. As shown in non-
linear modelling experiment, this change resulted in lower
RC values compared to the original SY algorithm [12]
and compared to a case where SY parameter identification
algorithm was applied [21]. Therefore, AH modelling has
a more reliable effective inputs selection (feature selection)
compared to SY modelling.

In the case study that was performed for breast cancer
survival prediction, AH algorithm average of accuracies
was moderately reliable compared to the other algorithms.
One might consider improving the evolutionary parameter
identification (or the GA tuning process) in order to decrease
the variance the fuzzy modelling algorithm as future work.
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